REPRODUCTIVE EFFECTS ASSESSMENT GROUP'S REPORT ON THE MUTAGENICITY OF 1.3-BUTADIENE AND ITS REACTIVE METABOLITES

Notice - This site contains archived material(s)

Archive disclaimer
Archive disclaimer
Archived files are provided for reference purposes only. These files are no longer maintained by the Agency and may be outdated. For current EPA information, go to www.epa.gov. It is EPA's policy to support reasonable accommodation to persons with disabilities, pursuant to the Rehabilitation Act of 1973, 29 U.S.C. 791. If you need assistance with accessing archived files, contact EPA's Reasonable Accommodations or submit a request using the Contact Us form.


Abstract

A major data gap for assessing heritable risk from exposure to 1,3-butadiene is the lack of mammalian mutagenicity data. The data base on the mutagenic potential of 1,3-butadiene is limited to three bacterial studies from the same laboratory. Two of these studies were positive only in the presence of liver S9 mix from chemically pretreated animals. In vitro data suggest that 1,3-butadiene is metabolized to two epoxide intermediates. 3,4-Epoxybutene, one potential reactive metabolite of 1,3-butadiene, is a monofunctional alkylating agent and is a direct-acting mutagen in bacteria. In addition, unpublished data suggest that 3,4-epoxybutene induces DNA damage and chromosomal aberrations in mice. Another potential reactive metabolite, 1,2:3,4-diepoxybutane, is a bifunctional alkylating agent and is mutagenic in a wide variety of organisms (bacteria, fungi, and the germ cells of Drosophila). This metabolite also induces DNA damage in mice and in cultured hamster cells, is clastogenic in fungi and cultured rat cells, and produces chromosome damage/breakage in Drosophila germ cells.

Citation

Rosenthal, S. REPRODUCTIVE EFFECTS ASSESSMENT GROUP'S REPORT ON THE MUTAGENICITY OF 1.3-BUTADIENE AND ITS REACTIVE METABOLITES. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/J-85/317 (NTIS PB86167939).

Additional Information

Pub. in Environmental Mutagenesis 7, p933-945 Oct 85.