Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Climate Change, Indoor Ozone and Vascular Function

EPA Grant Number: R835759
Title: Climate Change, Indoor Ozone and Vascular Function
Investigators: Kipen, Howard , Ryan, P. Barry , Barr, Dana Boyd , Georgopoulos, Panos G. , Weschler, Charles J. , Lioy, Paul J. , Ohman-Strickland, Pamela , Meng, Qingyu
Institution: Rutgers
EPA Project Officer: Chung, Serena
Project Period: May 1, 2015 through April 30, 2018 (Extended to April 30, 2019)
Project Amount: $999,975
RFA: Indoor Air and Climate Change (2014) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Climate Change , Air

Objective:

The main goal is to study the impact of changes in ambient O3 resulting from climate change on indoor exposure to O3 and O3-byproducts, ultimately assessing cardiovascular health risk, in a susceptible (elderly) group, for two climatically different regions (New Jersey & Georgia). Specific objectives are to:

1. Examine how changes in ambient O¬3 as a consequence of climate change may affect indoor air quality (IAQ) through both a direct effect on indoor O3 concentration and an indirect effect on indoor chemistry. We hypothesize that: 1) indoor O3 concentrations as well as the reaction products of O3 with typically abundant indoor alkenes, limonene and squalene, will increase with increasing outdoor O3 concentration; and 2) relative to outdoor O3, indoor O3 concentrations will increase with increasing ventilation rates, while the concentrations of O3/alkene reaction products will decrease with increasing ventilation rates.

2. Examine whether indoor exposures to air pollutants and cardiorespiratory responses can be modified by a portable air cleaner. We hypothesize that 3) The use of portable air cleaners can reduce indoor exposures to O3 and O3/alkene reaction products,; and 4) the use of portable air cleaners can significantly improve microvascular function and reduce markers of pulmonary oxidative stress, indicators of increased risk for adverse health outcomes.

3. Model climate change impacts on ambient O3 pollution, indoor exposures to O3 and its reaction products, and cardiovascular health outcomes. We hypothesize that 5) The impact of climate change on indoor exposures and health can be modeled based on data from Objectives 1 and 2; and 6) combining projections of indoor exposures to O3 and reaction products with results from Objective 2 and the literature on predictors of cardiac risk, one can estimate risk for adverse cardiac events from climate driven changes in indoor O3.

Approach:

We will recruit a total of 30 individuals from Jersey City and Atlanta who are 60-75 years old and live in houses with window AC. We will measure both indoor and outdoor O3, PM2.5, and O3-alkene reaction products for two 48-h sessions for each home during the warm/hot season – the season most likely affected by climate change. Temperature, relative humidity and ventilation rate will also be measured at each home. Using a crossover design, one session will have active air cleaners in both living- and bedrooms and another will use sham air cleaners with filters removed. Participants will be tested for cardiorespiratory responses after each 48-hr period. We will examine 1) how changes in ambient O¬3 and home ventilation rate affect indoor levels of O3 and O3/alkene reaction products; and 2) whether introduction of air cleaners can temporarily reduce indoor PM2.5, O3 and O3 reaction products and improve biomarkers of cardiopulmonary health. We will model climate change impacts on ambient O3 pollution, indoor exposures to O3 and O3 reaction products, and cardiorespiratory outcomes for two climatically different areas. These studies examine IAQ contributions to cardiovascular diseases, and augment considerations regarding interventions to address climate change impacts in the elderly.

Publications and Presentations:

Publications have been submitted on this project: View all 6 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 2 journal articles for this project

Supplemental Keywords:

climate change, indoor ozone, ozone-initialized chemistry, vascular function

Progress and Final Reports:

  • 2015 Progress Report
  • 2016 Progress Report
  • 2017 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2017 Progress Report
    • 2016 Progress Report
    • 2015 Progress Report
    6 publications for this project
    2 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.