Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Cancer MAPs: A 3D Organotypic Microfluidic Culture System to Identify Chemicals that Impact Progression and Development of Breast Cancer

EPA Grant Number: R835737C003
Subproject: this is subproject number 003 , established and managed by the Center Director under grant R835737
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Human Models for Analysis of Pathways (H MAPs) Center
Center Director: Murphy, William L
Title: Cancer MAPs: A 3D Organotypic Microfluidic Culture System to Identify Chemicals that Impact Progression and Development of Breast Cancer
Investigators: Beebe, David , Murphy, William L
Institution: University of Wisconsin - Madison
EPA Project Officer: Aja, Hayley
Project Period: December 1, 2014 through November 30, 2018 (Extended to November 30, 2019)
RFA: Organotypic Culture Models for Predictive Toxicology Center (2013) RFA Text |  Recipients Lists
Research Category: Chemical Safety for Sustainability

Objective:

The effects of chemicals present in the environment on human health are poorly understood. Exposure to toxicants has been identified as a major preventable risk factor for breast cancer, the leading cause of cancer-related death among women worldwide. The primary objective of this project is to develop, validate and use a reliable 3D high-throughput screening platform to explore the influence of chemicals on the different stages of breast cancer development. We hypothesize that certain chemicals will affect hormone-responsive mammary epithelial cells differently at each stage of breast cancer. In Aim 1 we will optimize and automate our synchronous microfluidic 3D in vitro breast cancer model to be used for chemical library screening. In Aim 2 we will develop an adverse outcome pathway (AOP) based model of estrogen-receptor (ER) mediated invasive ductal carcinoma (IDC) by utilizing quantitative physiological and molecular endpoints to identify key steps between the initiating event (estrogen receptor ligand binding) and the adverse outcome (IDC) in our microfluidic platform. Then, in Aim 3, we will conduct low- and medium-throughput screens using chemicals from the ToxCast library in our organotypic system to identify chemicals that promote ER-mediated and non ER-mediated IDC. Completion of the project as described will produce an organotypic culture model (OCM) of breast cancer compatible with higher throughput screening (HTS) and high-content (HCS) screening approaches to discern toxic effects of chemical substances on breast cancer development and progression.

Publications and Presentations:

Publications have been submitted on this subproject: View all 6 publications for this subproject | View all 215 publications for this center

Journal Articles:

Journal Articles have been submitted on this subproject: View all 6 journal articles for this subproject | View all 81 journal articles for this center

Supplemental Keywords:

ductal carcinoma in situ (DCIS), estrogen disrupting chemicals (EDC), extracellular matrix (ECM), lumen, mammary duct, microenvironment, microfluidics, stroma, xenoestrogens

Progress and Final Reports:

  • 2015 Progress Report
  • 2016 Progress Report
  • 2017 Progress Report
  • 2018
  • Final Report

  • Main Center Abstract and Reports:

    R835737    Human Models for Analysis of Pathways (H MAPs) Center

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R835737C001 Liver MAPs
    R835737C002 Brain MAPs
    R835737C003 Cancer MAPs: A 3D Organotypic Microfluidic Culture System to Identify Chemicals that Impact Progression and Development of Breast Cancer
    R835737C004 Vascular MAPs: Vascular and Neurovascular Tissue Models
    R835737C005 Pathway Analysis Core

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2018
    • 2017 Progress Report
    • 2016 Progress Report
    • 2015 Progress Report
    6 publications for this subproject
    6 journal articles for this subproject
    Main Center: R835737
    215 publications for this center
    81 journal articles for this center

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.