Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2016 Progress Report: Organotypic Liver Model for Predictive Human Toxicology and Metabolism

EPA Grant Number: R835736C004
Subproject: this is subproject number 004 , established and managed by the Center Director under grant R835736
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Mickey Leland National Urban Air Toxics Research Center (NUATRC)
Center Director: Beskid, Craig
Title: Organotypic Liver Model for Predictive Human Toxicology and Metabolism
Investigators: Taylor, D. Lansing , Davidson, Jeffrey M. , Gough, Albert , Vernetti, Lawrence
Institution: University of Pittsburgh , Vanderbilt University
EPA Project Officer: Aja, Hayley
Project Period: December 1, 2014 through November 30, 2018 (Extended to November 30, 2019)
Project Period Covered by this Report: December 1, 2015 through November 30,2016
RFA: Organotypic Culture Models for Predictive Toxicology Center (2013) RFA Text |  Recipients Lists
Research Category: Chemical Safety for Sustainability

Objective:

Our second year VPROMPT Center goals consisted of three milestones for the human liver organotypic culture model (OCM).  One milestone was to demonstrate ion mobility mass spectroscopy (IM-MS/MS) application to secretome products from the liver OCM.  The second milestone was to measure the toxicity responses of 15-20 ToxCast chemicals.  The third milestone was to demonstrate liver OCM module compatibility on the Vanderbilt integrated platform. 

Progress Summary:

The liver organotypic culture model (OCM) was developed and previously characterized in the Nortis commercial microfluidic device (Seattle, WA) at the Drug Discovery Institute laboratory of D. Lansing Taylor, University of Pittsburgh.  The liver OCM consists of four human liver cell types (primary human hepatocytes, a Kupffer-like immune cell, stellate, and endothelial cells) that are constructed as a 3D, microfluidic tissue-like liver structure modeling the liver acinar organization. A subset of the human hepatocytes were transduced with a lentiviral construct to encode the hepatocyte genome with an expressible fluorescent cytochrome C protein in the mitochondria to monitor activation of apoptosis.  Construction and use of the model and fluorescent protein transductions have been previously published (Vernetti, et al., 2015; Senutovitch, et al., 2015; Vernetti, et al., 2016).

In 2016, we used the liver OCM to compare the influx and efflux media for secretome substrates and metabolites of more than 1,600 compounds from biomolecules including but not limited to fatty acids; amino acids and dipeptides; carbohydrates; small organic acids; catecholamines; oils and lipids; pyrroles; and polyamines. MetaboAnalyst 3.0 analysis of the m/z and MS/MS fragmentation products obtained from IM-MS/MS secretome measurements found four unique pathways affected by tolcapone including histidine metabolism, propanoate metabolism, protein biosynthesis, and valine, leucine, and isoleucine degradation. The unique pathways affected by entacapone included aspartate metabolism, citric acid cycle, fructose and mannose degradation, galactose metabolism, mitochondrial electron transport chain, and phenylalanine and tyrosine metabolism. Additional analysis of results is planned to better understand the findings.

Seventeen compounds were tested at 1 or 2 concentrations for 18 days of treatment in the liver OCM. The cumulative incidents of adverse responses (an adverse response is defined as a 50% change from control for any of the following measurements: 18 LDH, 3 Albumin, 3 Urea, 2 Cytochrome C biosensor, and 1 each for Bile Efflux, TNF-α, and Testosterone clearance measurements) for the compounds shown in the figure. Out of a possible 29 toxicity measurements collected over the 18 day treatment period, the clinical hepatotoxins troglitazone, tolcapone, trovafloxacin, and nimesulide produced more adverse incidents than iDILI compounds such as valproic acid and warfarin or when compared to non-hepatotoxins caffeine or buspirone.

The third milestone, to incorporate the liver OCM into an integrated platform being developed at Vanderbilt University, will be completed in 2017. 

 

Future Activities:

In Year 3, we will complete the following milestones:

Milestone 11: Implement two new real-time, fluorescence-based biosensors of key physiological functions for liver and other organoids;

Milestone 12: Validate iPSC hepatocytes;

Milestone 13: Complete module compatibility on integrated platform;

Milestone 14: Test and optimize module for interaction with other tissue modules;

Milestone 15: Collaborate with other groups to incorporate mechanism-based fluorescent protein biosensors in other cells; and

Milestone 16: Validate all liver readouts on integrated platform.  


Journal Articles on this Report : 3 Displayed | Download in RIS Format

Publications Views
Other subproject views: All 34 publications 10 publications in selected types All 10 journal articles
Other center views: All 169 publications 57 publications in selected types All 56 journal articles
Publications
Type Citation Sub Project Document Sources
Journal Article Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL. Fluorescent protein biosensors applied to microphysiological systems. Experimental Biology and Medicine 2015;240(6):795-808. R835736 (2015)
R835736 (2016)
R835736C004 (2015)
R835736C004 (2016)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Abstract: Sage Publications-Abstract
    Exit
  • Journal Article Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Experimental Biology and Medicine 2016;241(1):101-114. R835736 (2015)
    R835736 (2016)
    R835736 (2017)
    R835736C004 (2015)
    R835736C004 (2016)
    R835736C004 (2017)
    R835736C004 (2018)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Abstract: Sage Publications-Abstract
    Exit
  • Journal Article Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, Brown JA, Foulke-Abel J, Hasan N, In J, Kelly E, Kovbasnjuk O, Repper J, Senutovitch N, Stabb J, Yeung C, Zachos NC, Donowitz M, Estes M, Himmelfarb J, Truskey G, Wikswo JP, Taylor DL. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Scientific Reports 2017;7:42296 (15 pp.). R835736 (2015)
    R835736 (2016)
    R835736C004 (2016)
    R835736C005 (2016)
    R835738 (2016)
    R835738C003 (2017)
    R835738C005 (2017)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: Nature-Full Text PDF
    Exit
  • Abstract: Nature-Abstract
    Exit
  • Other: Scientific Reports-Full Text PDF
    Exit
  • Relevant Websites:

    Microphysiology Systems Database Exit
    The Vanderbilt-Pittsburgh Resource for Organotypic Models for Predictive Toxicology Exit

    Progress and Final Reports:

    Original Abstract
  • 2015 Progress Report
  • 2017 Progress Report
  • 2018 Progress Report
  • Final

  • Main Center Abstract and Reports:

    R835736    Mickey Leland National Urban Air Toxics Research Center (NUATRC)

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R835736C001 Mammosphere Bioreactor For Life-Stage Specific Toxicology
    R835736C002 Organotypic Culture Model to Analyze DevelopmentalLimbMalformationsResulting from Toxicant/Teratogen Exposure
    R835736C003 Validating a fetal membrane on a chip model for characterizing reproductive toxicant exposure risks
    R835736C004 Organotypic Liver Model for Predictive Human Toxicology and Metabolism
    R835736C005 Systems Engineering & Analysis for Organotypic Culture Models

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 2018 Progress Report
    • 2017 Progress Report
    • 2015 Progress Report
    • Original Abstract
    34 publications for this subproject
    10 journal articles for this subproject
    Main Center: R835736
    169 publications for this center
    56 journal articles for this center

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.